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Abstract. The theory of the nonlinear dielectric response to an external dc electric field is
developed in the random-field-theory framework. The equations describing the dependence of the
order parameter and the dielectric susceptibility (both linear and nonlinear) on the temperature,
dc electric field, frequency, parameters of the host lattice and random-field sources are obtained.
The numerical solution of these equations for several random-field-source concentrations and
other parameters has shown that in the dipole-glass phase the dc electric field always decreases
the dielectric response, while in the mixed ferroelectric–glass phase the dc field can either
decrease or increase this response. Approximation of the numerical results for the nonlinear part
of the susceptibility leads to1χ ′(ξ, T )/χ ′(0, T ) = −b0(T )ξ

2+b1(T )ξ
7/2 with b1(T ) < b0(T )

(ξ is the dimensionless dc-field value). It was shown that, for all of the cases considered,
b0(T = Tg) remains finite andb1(T = Tg) has a maximum (Tg is the dipole-glass freezing
temperature). The absence of critical divergency of the nonlinear susceptibility both in theory
and experiment proves that, unlike conventional spin glass, the dipole-glass state in relaxors is
a metastable state with long (up to infinite) relaxation times. A comparison of the theoretical
results obtained with available experimental data for PMN and PMN–10PT is carried out. The
calculated temperature and dc-field dependences of the nonlinear susceptibility are in agreement
with observed data.

1. Introduction

The influence of external fields on the dielectric (magnetic) susceptibilities of disordered
dielectric (magnetic) systems has attracted much attention for many years. This is because
the investigation of this phenomenon can shed some light on the nature of the phase
transitions in the disordered systems. Phase diagrams of such disordered systems can
contain ferroelectric (ferromagnetic) phases with long-range order, mixed ferroelectric–glass
(ferromagnetic–spin-glass) phases with the coexistence of long- and short-range order and
also dipole-glass (spin-glass) states [1–4]. One of the most interesting questions of glassy-
state physics is the question of whether glasses are truly equilibrium phases or whether they
are just metastable states with long-time (up to infinite) relaxation modes. In the search
for a solution of this problem, the investigation of nonlinear susceptibility appears to be of
particular interest, because this quantity is more sensitive to dipole- or spin-glass order than
linear susceptibility. In spite of the existence of experimental data on critical divergence of
the nonlinear susceptibility of spin glasses such as AgMn at the freezing temperatureTg,
the question of whether a static phase transition is realized atTg has not yet been resolved
for all spin glasses [1]. The investigation of the nonlinear susceptibility in the ‘classical’
dipole glasses KCl:OH− gave no divergency atTg in experiment [5] or in theory [6]. The
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nature of the dielectric response of relaxor ferroelectrics (relaxors) such as PbMg1/3Nb2/3O3

(PMN), PbSc1/2Ta1/2O3 (PST) and Pb0.92La0.08Zr0.65Ti0.35O3 (PLZT 8/65/35) has been the
subject of intensive study for many years (see, e.g., [7–14]). Establishing the dependence
of the nonlinear susceptibility onT and the external electric field was the main goal of
these investigations. The dependence obtained of the dielectric response on the mode of
field application (that is, field application during sample cooling or sample heating, with
possible subsequent zero-field heating or cooling (FC, FH, ZFH, ZFC)) speaks in favour of
nonergodic behaviour of relaxors, which is known to be a characteristic feature of the glassy
state and of the mixed ferroelectric–glass phase [1–4]. However, the observed properties of
the relaxors have been discussed in terms of several models, including that of ferroelectric
long-range order (see, e.g., [15]). The absence of a quantitative description of the observed
anomalies seems to be the main reason for the difficulties in achieving an understanding
of the nature of the relaxors. Recently, a theoretical approach for use in the description
of relaxors was proposed [16] in the random-field-theory framework [17]. The theory
developed was shown to fit fairly well several observed static [16, 18] and dynamic [19]
properties of relaxors. The nonlinear contribution of random internal electric fields to the
properties of relaxors was also taken into account recently [18, 20].

In the present work the theory of the nonlinear dielectric response of the relaxors to an
external dc field is developed. We calculated the influence of a dc external electric field
E on the polarization and the nonlinear susceptibility (which is a linear function of the
alternating field). A comparison of the data obtained with available experimental results is
carried out.

2. Theory

Relaxor ferroelectrics such as PMN, PST, PLZT can be considered as systems containing
random-site and random-orientation electric dipoles, antisite ions (which appear due to sub-
stitutional disorder) and vacancies of lead and oxygen. All of these are sources of random
electric fields.

According to a recently proposed model [16], these random-field sources are embedded
in a host lattice, which was shown to coincide with the Burns and Dacol reference phase [21].
The local physical properties of the relaxors can depend on specific random-field values, so
the average macroscopic properties have to be calculated with the help of a random-field
distribution function. This leads to a dependence of the relaxor properties (including the
phase diagram [1, 2]) on the distribution function characteristics—its maximum position
(mean fieldE0) and width1E.

2.1. General equations

2.1.1. The order parameter.Self-consistent averaging over spatial configurations of
random-field sources and subsequent thermal averaging over possible dipole orientations
permits one to obtain the equation for the ferroelectric order parameter (the dimensionless
polarizationL) in the form [17]

L =
∫ ∞
−∞
〈l(E + E)〉f (E,L) dE =

∫ ∞
−∞
〈l(E)〉f (E − E,L) dE. (1)

HereL characterizes the number of coherently oriented dipoles, the polarizationP = nd∗L,
〈l〉 is the quantum statistical (thermal) average of the dimensionless single-dipole moment
l = d∗/d∗, d∗ = dγ (ε0 − 1)/3 is the effective-impurity dipole moment,γ is the Lorenz
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factor, ε0 is the host-lattice static permittivity,E and E are internal random and external
fields respectively. The random-field distribution functionf (E,L) has been calculated
self-consistently (see [17] for details) in the framework of statistical theory [22].

Calculations of the distribution function of the random fields induced by electric dipoles,
point charges and dilatational centres were carried out in [17] for two-orientable electric
dipoles (lz = ±1, lx = ly = 0) in the Gaussian limit for the electric dipole random-field
partial distribution function. It can be shown that the Gaussian limit for this function is
valid for nr3

c > 1, wheren and rc are the electric dipole concentration and the host-lattice
correlation radius respectively. This distribution function has the form

f (E,L) = 1

2π

∫ ∞
−∞

exp
[
iρ(E − E0L)− A|ρ|3/2− B|ρ| − Cρ2

]
dρ (2)

where

A = 32

15

(
π

2

Ze

ε0

)3/2

n1 B = �0

9

1+ θ
1− θ pn2

C = 16π

15

(
d∗

ε0r3
c

)2

nr3
c E0 = 4πnd∗

ε0

(3)

whereE ≡ Ez, L ≡ Lz, n1 and n2 are the concentrations of point charges and dilat-
ational centres respectively,Ze and�0 are the point defect charge and elastic moment
respectively,p and θ are the host-lattice piezoelectric tensor component and Poisson
coefficient respectively.

Since the random fieldE enters the exponent in equation (2) linearly, the distribution
functionf (E,L) corresponds to the case of a linear contribution of the random fields. Note
that calculations of the distribution function of the random field induced by electric dipoles
for arbitrary values ofnr3

c , i.e. beyond the Gaussian limit, were performed in [23].
The distribution function allowing for both linear and nonlinear random-field contrib-

utions was calculated in references [18, 20]. In the case of host-lattice cubic symmetry and
when one retains only the first nonlinear term, the distribution function has the form

fnL(E,L) =
∫ ∞
−∞

f (x, L)δ(E − x − α3x
3) dx (4)

whereα3 is the third-order nonlinear coefficient of the host lattice andf (x, L) is given by
equations (2), (3).

To describe the frequency dependence of the order parameter, one has to consider the
relaxation of a single dipole〈l〉 to its equilibrium value〈l〉eq . For a two-orientable dipole,
such a dependence has a simple Debye form [23]:

〈l(E + E)〉 = 〈l(E + E)〉eq
1+ iω〈τ(E + E)〉 〈l(E + E)〉eq = tanh

(
E + E
kT

)
(5)

〈τ(E + E)〉 = τ cosh(2(E + E)/kT )
cosh((E + E)/kT ) . (6)

Here τ = τ0 exp(U/kT ) is the Arrhenius law for a dipole reorientation between two
equivalent positions with barrier heightU . Substituting equations (2)–(6) into equation (1),
one can obtain (after some simple transformations) the following self-consistent equation
for the order parameter:

L = 2

π

∫ ∞
0

∫ ∞
0

tanh

(
E + α3E

3

kT

)
exp

[−Aρ3/2− Bρ − Cρ2
]

× sin(ρE)
sin(ρ(E + E0L))

1+ iωτ1(E)
dE dρ (7)
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where

τ1 = τ cosh(2(E + α3E
3)/kT )

cosh((E + α3E3)/kT )
.

Equation (7) describes the dependence of the order parameter on the temperature,
frequency and external electric field, as well as on the characteristics of the random-field
sources and host lattice.

Since equation (7) can be solved only numerically, let us rewrite it in the following
dimensionless variables:

L = 2

π

∫ ∞
0

∫ ∞
0

tanh

(
x + α0x

3

τ

)
exp

[−µy3/2−1y − y2
]

× sin(λxy)
sin(λy(ξ + L))

1+ iντ1(x)
dx dy (8)

where

τ1(x) = τ cosh(2(x + α0x
3)/τ)

cosh((x + α0x3)/τ)
.

Here

x = E/E0 y = ρ
√
C τ = kT /E0 = T/Tcmf

α0 = α3E
2
0 ξ = E/E0 ν = ωτ0

µ = A/C3/4 1 = B/
√
C λ = E0/

√
C ≡

√
15πnr3

c .

(9)

2.1.2. The dielectric susceptibility.The dielectric susceptibility is known to be the first
derivative of the polarizationP = nd∗L with respect to the external fieldE , i.e.

χαβ = nd∗ ∂Lα
∂Eβ

(10)

whereα, β = x, y, z.
For two-orientable dipoles,L = Lz 6= 0 and Lx = Ly = 0, so the dielectric

susceptibility χ ≡ χzz. Keeping in mind that both the left- and right-hand sides of
equation (8) depend onL, and performing the differentiation in equation (10), we obtain

4π

ε0
χ = Q

1−Q (11)

Q = 2λ2

π

∫ ∞
0

∫ ∞
0

tanh

(
x + α0x

3

τ

)
exp

[−µy3/2−1y − y2
]

× sin(λxy)
y cos(λy(ξ + L))

1+ iντ1(x)
dx dy. (12)

Equations (11), (12) (together with (9)) describe the dependence of the dielectric
susceptibility on the temperature, external electric field, frequency, parameters of the host
lattice and random-field sources. Note that equation (12) can be represented as an infinite
series in powers ofξ , its coefficients being linear and nonlinear susceptibilities of the
corresponding order. To obtain the linear susceptibility, we should retain just the zeroth
term in this expansion [19, 23, 25].
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2.2. The mean-field approximation

In the general case, equations (8) and (12) can be solved only numerically. Let us consider
the limiting case whereE0 → ∞ (nr3

c → ∞) of the equations (8) and (12), i.e. the
mean-field approximation. Keeping in mind that, in this limit,

exp(−µy3/2−1y − y2)→ 1

and

[1/(2π)]
∫ ∞
−∞

cos(kx) dk = δ(x) δ(ax) = δ(x)/a
one obtains after some transformations

Lmf = tanhV

1+ iντ1(V )
τ1 = cosh 2V

coshV
(13)

where

V = ξ + Lmf + α0(ξ + Lmf )3
τ

4π

ε0
χmf = Qmf

1−Qmf

Qmf = 1+ 3α0(ξ + Lmf )2
τ [1+ iντ1(V )] cosh2V

.

(14)

In the static case (ν = 0), equation (13) transforms toLmf = tanhV , which atα0 = 0
completely coincides with the well known expression for the ferroelectric transition order
parameter derived from the conventional type of free energy of the Ising model for the
order–disorder phase transition (see, e.g., [24]). The same coincidence is also found for the
dielectric susceptibility. Atα0 6= 0, additional nonlinear terms appear in the equation for the
order parameter and that for the dielectric susceptibility. In the general case, equations (13),
(14) describe the temperature, frequency and electric field dependence of these quantities in
the mean-field approximation, i.e. for the ordinary ferroelectric phase transition of order–
disorder type.

3. The electric field and temperature dependence of the nonlinear susceptibility

Numerical calculations of the real part of the dependence of the susceptibility onE , T and
ν were performed on the basis of equations (8), (11), (12) for several values ofλ, 1 andµ.
In the calculations we chose the following impurity dipole parameters:U/Tcmf = 1.143,
τ0 = 10−13 s−1. Also, we tookω = 200 Hz (ωτ0 = ν = 2× 10−11). Note that even at
α0 = 0 there is a contribution that is nonlinear inξ due to the nonlinear dependence on
ξ of the integrands of equations (8) and (12). This can be also seen from the mean-field
expressions forL and χ (equations (13), (14)). In the case whereα0 6= 0, additional
nonlinearity appears due to the nonlinear contribution of the internal random electric field
to the distribution function. We shall call this the ‘intrinsic’ nonlinearity of the system.

The phase diagram of the disordered systems depends on the random-field-source
concentrations. It may contain ferroelectric phases, mixed ferromagnetic–glass phases and a
dipole-glass state (see, e.g., [2, 18]). The concentrations of electric dipoles, point charges and
dilatational centres which correspond to the aforementioned phases were calculated recently
[17, 18]. To capture the nonergodic behaviour of the relaxor ferroelectrics, we performed our
numerical calculations for the parameters corresponding to the dipole-glass state and those
corresponding to the mixed ferromagnetic–glass phase. Note that the ‘intrinsic’ nonlinearity
(α0 6= 0) does not influence the critical concentrations of random-field sources, but it changes
Tc and the order parameter [20].
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Figure 1. The temperature dependence of the dielectric susceptibility forλ = 1,1 = 8, α0 = 0
for several dimensionless dc-field valuesξ (indicated by the numbers near the curves).

Figure 2. The temperature dependence of the dielectric susceptibility, allowing for a nonlinear
random-field contribution, atω = 200 Hz, 1 = 8, α0 = 1 for several dc-field valuesξ ;
the curves labelled 1–4 and the corresponding ones labelled 1′–4′ are for λ = 5 andλ = 1
respectively.

3.1. The dipole-glass state

The temperature dependences of the dielectric susceptibilityχ ′ at the frequencyω = 200 Hz
for several values of the external electric field are depicted in figures 1 and 2 forα0 = 0
andα0 = 1 respectively. It is seen that increase of the external electric field leads to the
dielectric susceptibility decreasing, i.e. the electric field suppresses the dielectric response
of the system. Meanwhile, the shape ofχ ′(T ) at ξ 6= 0 looks like that atξ = 0. We have to
draw attention to the fact that the shapes ofχ ′(T ) for α0 = 0 andα0 = 1 are significantly
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different (compare figures 1 and 2). Indeed, there are two maxima atα0 = 0 (named
the LT and HT maxima in [19], where a detailed consideration of the linear susceptibility
of relaxors was performed) and only one maximum forα0 = 1, at a temperature much
lower than that of the LT maximum. This means that the ‘intrinsic’ nonlinearity of the
system, which is due to the nonlinear contribution of the random field, including spatial
correlation effects [18, 20], influences the dielectric response more strongly than the external
dc field. Since the curves forξ = 0 in figures 1, 2 correspond to linear susceptibility, we
may conclude that the ‘intrinsic’ nonlinearity significantly changes both the linear and the
nonlinear susceptibilities: it shifts the positions of their maxima towards lower temperatures
and changes the temperature dependence of the dielectric response. This phenomenon may
be the main reason for the shift of the dielectric susceptibility maximum towards lowerT

for relaxors such as PST with a higher level of disorder [26].

Figure 3. The dependence of the nonlinear dielectric
susceptibility on the dc external field forλ = 1, 1 = 8,
α0 = 0 for several temperaturesT/Tcmf (indicated by the
numbers near the curves).

The relative nonlinear part of the susceptibility can be expressed as

1χ ′(ξ, T )/χ ′(0, T ) = (χ ′(ξ, T )− χ ′(0, T ))/χ ′(0, T ).
The dependence of this quantity on the external electric field is represented in figure 3
for α0 = 0 and several temperatures. These curves proved to be fitted fairly well by the
expression

1χ ′(ξ, T )/χ ′(0, T ) = −b(T )ξ2 (15)

with b = 1.12× 10−2, 1.34× 10−2, 1.4× 10−2 for T/Tcmf = 2.8, 1.5, 0.5 respectively.
The calculations had shown that at smaller temperatures 0.16 T/Tcmf 6 0.3 (this interval
includes theTg-value [19]),b remains finite. Therefore there is no divergency in the value
of b(T ) in the low-temperature region (and this region includes the freezing temperature
Tg). To check whether the results obtained depend on the concentrations of the dipoles and
the nonlinear contribution of the random field, we performed calculations of1χ ′ for several
α0 andλ = 5, i.e. for an electric dipole concentration 25 times that used in the previous
case withλ = 1 (see equation (9)). The results of the calculations are depicted in figure 4.
It is seen that for all of the cases considered atα0 = 0 (figure 4(a)),α0 = 1 (figure 4(b))
andα0 = −1 (figure 4(c)),b(T ) is independent ofξ over the regionξ 6 0.25 and has a
finite value in the low-temperature region includingT = Tg (Tg/Tcmf ≈ 0.1 [19]). The
most important difference between the cases whereλ = 1 (figure 3) andλ = 5 (figure 4) is
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Figure 4. The field dependence of the coefficientb(T ) in equation (15) forλ = 5, 1 = 8
and α0 = 0 (a); 1 (b);−1 (c) for several temperaturesT/Tcmf . Inset in (a): the nonlinear
dielectric susceptibility for several temperaturesT/Tcmf : 2 (curve 1); 1 (curve 2); 0.5 (curve 3).
The points represent the results of calculations; the solid line was obtained by fitting with
equation (17)

the appearance of a significant dependence ofb in equation (15) onξ at ξ > 0.25. For all
ξ , the coefficientb can be represented as

b(ξ, T ) = b0(T )− b1(T )ξ
3/2. (16)

Equation (16) fits theb(ξ, T ) dependence fairly well withb1(T ) < b0(T ). Substitution
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of equation (16) into (15) gives

1χ ′(ξ, T )/χ ′(0, T ) = − [b0(T )ξ
2− b1(T )ξ

7/2
]
. (17)

Equation (17) also describes the field dependence of1χ ′(ξ, T )/χ ′(0, T ) at larger
temperatures than those depicted in figure 4(a) (see the inset to the figure, where the
solid lines correspond to equation (17) withb0 = 8.3 × 10−2, b1 = 0 (T/Tcmf = 2);
b0 = 3.3× 10−1, b1 = 4.1× 10−2 (T/Tcmf = 1); b0 = 5.1× 10−1, b1 = 8.6× 10−2

(T/Tcmf = 0.5)). These data show thatb1(T ) has a sharp enough maximum nearT = Tg
while b0(T ) has a smeared maximum (if it has one at all) nearT = Tg. Note that
equation (17) fits the data obtained much better than the equation

1χ ′(ξ, T )/χ ′(0, T ) = −b0(T )ξ
2+ b1(T )ξ

4

with integer powers which follow from the ordinary form of the free-energy expression.
For λ = 5, the nonlinear susceptibility appeared to be more than ten times that for

λ = 1 (compare figures 3 and 4(a)). Therefore, increasing the electric dipole concentration
increases the nonlinear susceptibility. The increase of the linear susceptibility with growth
of λ was demonstrated in reference [19]. Note that the case withλ = 5, 1 = 8 is close
to the boundary between the glass and the mixed phase (see [16]). Calculations also show
that increasing the parameters1 andµ decreases the linear and the nonlinear response of
the system.

3.2. The mixed ferromagnetic–glass phase

The temperature dependence of the nonlinear dielectric susceptibility in the mixed phase
appeared to be significantly different from that in the dipole-glass state. The main difference
is that both1χ ′ > 0 and1χ ′ < 0 occur for some ranges of the temperature and dc electric
field (see figures 5(a), 5(b)). For the dipole glass,1χ ′ < 0, becauseχ ′(0, T ) is always
larger thanχ ′(ξ, T ) (see figures 1, 2). It is seen from figure 5 that there are two maxima in
the nonlinear part of the susceptibility, these maxima having heights that are especially large
at small dc electric fields. Note that for the mixed-phase parameters considered,1χ ′ < 0
at ξ = E/Tcmf > 1, where the second maximum becomes less pronounced. For smallerξ ,
we have1χ ′ > 0 near both maxima and1χ ′ < 0 in the temperature regions away from
the maxima.

Analysis shows that the aforementioned peculiarities are the consequence of the co-
existence of long- and short-range order in the mixed phase. Indeed, calculations within the
mean-field approximation (long-range order), with the help of equation (14), have shown
that, in addition to the main maximum atT/Tcmf = 1, new maxima appeared at sufficiently
small dc electric fields, the sharpest one being atT/Tcmf < 1 (see figure 6). These new
maxima are due to there being several roots of the denominator in equation (14). Because
of the similarity of equations (14) and (11), one can expect the same peculiarities when
the mean-field approximation is not used, i.e. for the mixed-phase and dipole-glass states.
However, there is no sharp maximum for the dipole-glass state (see figures 1, 2), because
the random field suppresses and smears the dielectric response. Since in the mixed phase
the randomness is ‘smaller’ than in the dipole-glass state, two groups of maxima appeared
for this phase, atξ 6= 0 (see the right-hand inset in figure 5(a), where the positions of the
maxima are indicated by arrows). The details of the behaviour of the susceptibility near the
high-temperature maxima are depicted in the left-hand inset in figure 5(a). It is seen that the
height of the low-temperature maximum (LTM) is 25 times that of the high-temperature one
(HTM). Therefore one might guess that the origins of the LTM and HTM are, respectively,
long-range order and short-range order in the mixed phase.
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Figure 5. The temperature dependence of the nonlinear susceptibility for the mixed phase
(parameters:1 = 1, λ = 3.3 and α0 = 0) in the regions with soft (1χ ′ > 0) and stiff
(1χ ′ < 0) dielectric responses for several values of the dc electric fieldξ indicated by the
numbers near the curves. Insets to (a): the susceptibility with the HTM and LTM indicated
by arrows and that near the HTM; inset to (b): the observed [12] nonlinear part1ε′ of the
dielectric permittivity of PMN single crystal atω = 100 Hz and several dc fields applied along
the [111] direction.

The field dependence of the susceptibility is depicted in figure 7. It can be fitted with
the same expression, equation (17), as for dipole glass. Thus the dc-field dependence of the
nonlinear susceptibility in the mixed phase looks like that of a dipole glass.

4. Discussion and comparison with experiment

4.1. Discussion

The nonlinear dielectric response is known to be particularly interesting for disordered
systems because it is more sensitive to short-range order than the linear (zero-field)
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Figure 5. (Continued)

susceptibility. For spin glasses, much attention has been paid to the temperature dependence
of coefficients such asb(T ) in equation (15), i.e. to terms with a quadratic variation of the
susceptibility in the external magnetic field.

Theory (see [1] and references therein) predicts a critical divergence ofb(T ) at the
spin-glass freezing temperature if there is an equilibrium phase transition to a spin-glass
state. Data obtained for systems such as AgMn are now taken as evidence that real spin
glasses have an equilibrium phase transition at the freezing temperature. However, due
to the scatter of the available critical exponent values and the difficulties encountered in
attempting to compare theory and experiment for some disordered magnetic systems, this
problem is not yet absolutely resolved [1].

Measurements of the nonlinear dielectric susceptibility in KCl:OH−, which is known
to be a dipole glass, gave no evidence concerning the possible dielectric susceptibility
divergency at the freezing temperature. The experiment described in [5], as well as its
theoretical description [6], speaks against realization of a static phase transition into a
dipole-glass state. These results cannot be applied directly to disordered ferroelectrics such
as PMN, PST, PLZT because of their high polarizability and higher chemical complexity in
comparison with relatively simple systems such as KCl:OH− (see [4]), and, consequently,
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Figure 6. The temperature dependence of the static
mean-field susceptibility forα0 = 0 and several values
of the dc fieldξ , given near the arrows.

Figure 7. The field dependence of the dielectric
susceptibility for the parameters1 = 1, λ = 3.3, which
correspond to a mixed phase atα0 = 0, T/Tcmf = 0.05.

because electric dipoles are not the only source of random fields in the relaxors. Note that
the important role of the additional (to electric dipoles) random-field sources is a feature
peculiar to disordered ferroelectrics, because, in magnetic systems, random spins are the
main source of random magnetic fields.

The available experimental data for relaxors show no divergency of the nonlinear
susceptibility [7, 12, 14]. In view of this, the question arises of whether relaxors must
belong to the group of dipole glasses if we make the supposition that all of the properties of
spin and dipole glasses have to be exactly the same [13]. Another question that arises here
is that of whether the dipole-glass states (if there are any) in relaxors are truly equilibrium
phases or whether they are metastable states with long-time (up to infinity) relaxational
modes.

The calculations carried out in this work have shown that the nonlinear susceptibility
of the relaxors has a finite value in the vicinity of the freezing temperature and atTg (see
figures 3, 4), so dipole glass is a metastable state rather than an equilibrium phase, and
does exist in conventional spin glasses. The main reason for this difference seems to be the
stronger disorder in the relaxors due to the large number of random-field sources. Note also
that a random electric field is of electrostatic nature, i.e. the radius of its action is longer than
that of a random magnetic field. This results in a difference in some phenomena, including
a stronger (as compared to that for magnetic disordered systems) influence of random fields
on the physical properties of the substances under consideration. It is obvious, however,
that more detailed consideration of the physical reasons for the difference between spin and
dipole glasses is desirable.

4.2. Comparison with experiment

The dependence of the dynamic dielectric response on the dc electric field and temperature
was measured for PMN ceramics with 10 at.% PbTiO3 (PMN–10PT) [7], PMN single
crystals and ceramics [12], and PLZT (9/65/35) [14]. The measurements were performed in a
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field-cooled (FC) regime [7, 12] and under zero-field heating after field cooling (the ZFH/FC
regime) [14]. Since the FC regime is known to be reversible, we can use our theory to
explain the experimental data for this regime. The temperature dependence of1χ ′ measured
for PMN single crystal [12] for several dc fields applied along the [111] direction (i.e. along
the direction of the local polarization of PMN) is depicted in the inset to figure 5(b). One
can see that both theory (see figure 5) and experiment indicate the temperature regions
with 1χ ′ > 0 and1χ ′ < 0. The second low-temperature maximum was observed only at
sufficiently large dc field, and its origin was thought to be the ferroelectric phase induced
by the electric field [12]. This supposition is in agreement with the one discussed earlier
(see section 3), namely that the origin of the LTM is connected with long-range order. The
observed intensities of the HTM increase with increasing field (see the inset to figure 5(b)).
This behaviour is in agreement with the calculated behaviour only for 0.1 6 ξ 6 0.2,
because forξ > 0.25 the intensity of the HTM decreases and smears with increasing field
(see figure 5). Note that forE ‖ [100] only 1χ ′ < 0 was observed [12]. In our view,
this is because the polarization is not directed along the dc-field direction, so theE-field
suppresses the dielectric response of the crystal. Since our calculations were performed
within the model where the dc field is directed along the direction of orientation of the
dipoles, only the case whereE ‖ [111] can be considered in our model. The improvement
of the model for arbitrary electric field orientation is in progress now.

Positive and negative signs of1χ ′ were observed also for PMN–10PT [7]. The
measured dependence of the dielectric susceptibility on the dc field looks like that depicted
in figure 8. The observedχ ′(E) curve was fitted in [7] with the expression

χ ′(E, T ) = χ0(T )+ χ2(T )E2+ χ4(T )E4.

The corresponding theoretical result (equation (17)) differs from it in sign and in having the
power 3.5 instead of 4 in the second nonlinear term. Since the contribution of the latter term
is sufficiently small, equation (17) also fits the observedχ ′(E) dependence. On the other
hand, it would be interesting to measureχ ′(E) with greater accuracy. This could make it
possible to clarify whether an expression withE7/2 in the third term fits the observed data
better than one withE4. Note that the equation which expressesχ ′(E) in terms of integer
powers ofE used to be stated as the equation for the order parameter expansion in a power
series inE . In such an approximation, the coefficients of the series are the derivatives of the
corresponding order taken atE = 0. In our view, calculation of the nonlinear susceptibility
on the basis of equations (11), (17) seems to be more general, because it takes into account
all possible nonlinear contributions toχ ′(E) without any approximations. Measurements of
the temperature dependencesχ2(T ) andχ4(T ) have shown thatχ2(T ) increases asT → Tg
andχ4(T ) has a maximum atT = Tg [7]. Analysis of the data forb0(T ) andb1(T ) obtained
by fitting the curves in figure 4(a) with equation (17) showed thatb0(T ) slowly increases
when T approachesTg from above and then decreases forT < Tg. The value ofb1(T )

has a maximum in the region 0.16 T/Tcmf 6 0.2, which includes theTg-value. Note that
some experimental evidence in favour of the coexistence of short- and long-range order in
PMN–10PT was obtained recently [27].

The observed dependence of the nonlinear dielectric susceptibility on the dc field for
PMN single crystal has been described by the expressionχ ∼ E2 at temperatures near
the susceptibility maximum [12]. This behaviour is also in agreement with our theoretical
results, predicting1χ ′ ∼ E2 for both the dipole-glass state (see, e.g., figure 3) and for high
enough temperatures, when some admixture of long-range order might be expected.

Therefore, one can see that, despite the model’s limitations, random-field theory
describes the main features of the behaviour of the nonlinear susceptibilities of relaxors.
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5. Conclusions

The explanation of the most important experimental results—the absence of a nonlinear
susceptibility divergency at the freezing temperature and the existence of both positive (soft)
and negative (stiff) nonlinear susceptibilities—seems to shed light on the physical nature
of relaxors. That is, the first phenomenon speaks in favour of the statement that dipole
glass is a metastable phase with long-time relaxation modes, in contrast to ordinary spin
glasses, and the second phenomenon provides evidence of the existence of some admixture
of ferroelectric long-range order with the glassy state in relaxors such as PMN and PMN–
10PT. This mixed phase is known to be a nonergodic one [1, 2], with long-time relaxation
[23], which is a feature peculiar to glasses. Therefore the main characteristics of relaxors—
the dependence of the dielectric response on the regime of cooling and heating, and the
peculiarities of their dynamics—do not rule out the existence of a mixed phase in the
relaxors. For clarifying the question of the precise values of the short- and long-range-order
contributions in any particular relaxor, additional experimental and theoretical investigations
are extremely desirable.
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